
An Open System Framework for
component-based CNC Machines

John Michaloski
National Institute of Standards and Technology

Sushil Birla and C. Jerry Yen
General Motors

Richard Igou
Y12 and Oak Ridge National Laboratory

George Weinert
Lawrence Livermore National Laboratory

This paper describes a framework for open, component-based, manufacturing controllers. The framework is
based on the analysis of computer numerically controlled (CNC) machines. The framework includes a control
class hierarchy, plug-and-play modules aggregated from the class hierarchy, and a model of collaboration. The
framework can be used to build applications that range from a single-axis device to a multi-arm robot.

General Terms: Frameworks, Control

Additional Key Words and Phrases: API, architecture, classes, CNC, object-oriented

1. BACKGROUND

A desire for agile discrete-parts manufacturing has resulted in a need for open controllers
implemented with plug-and-play components for cost and performance reasons. Industry
requirements for open-control are spelled out in the “Open Modular Architecture Con-
troller” (OMAC) requirements document, originally specified by the Big Three automak-
ers in [Chrysler, Ford Motor Co., and General Motors 1994]. In response to these re-
quirements, the OMAC Application Programming Interface (API) workgroup was formed
and has developed the OMAC API specification that adopts an open system framework to
enable open controller technology. (See [OMAC API Workgroup] for more information.)

Generally the termframeworkis used to mean a specification for an integrated set of
software components. Anopen system frameworkis a framework that promotesinterface

Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without
fee provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice,
the title of the publication, and its data appear, and notice is given that copying is by permission of the ACM, Inc.
To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.
c2000 ACM 00360-0300/00/0300

2 � OMAC API

Primitive Data Types (int,double, etc.)

Units Measures Containers
(matrix)(length)(meter)

Geometry
(coordinate frame; circle)

Kinematic structure

Control components
(pid; filters)

Axis components
(sensors, actuators)

Machine tool axis or robotic joints
(translational; rotational)

Axis groups Fixtures
Other tooling

Simple machines; tool-changers; work changers Processes

PlansMachining systems/cells; workstations

Fig. 1. Manufacturing Controller Class Hierarchy

reusebased on a public interface specification [Johnson 1997]. An open system frame-
work allows integrators to mix and match components from different vendors. With an
open system framework, controllers can be built from best value components from best in
class services. For parts manufacturing, this ability leads to better integration of process
improvements and increased satisfaction of application requirements.

In the following sections, we review the OMAC API open system framework, which was
designed to be flexible enough to accommodate a broad range of manufacturing control ap-
plications. First, an analysis of application domain is presented leading to the definition
of an abstract class hierarchy. Next, the concept of a “module” is introduced as a neces-
sary prerequisite for plug-and-play. Following this discussion, module behavioral patterns
within the framework are reviewed. Finally, an example of module collaboration is pre-
sented.

2. APPLICATION DOMAIN ANALYSIS

The primary OMAC API application domain is multi-axis, coordinated motion control
typical of Computer Numerical Control (CNC) machines or robots. In addition, process
control is necessary to handle input/output, events and auxiliary equipment. Representative
controller applications include cutting, manipulation, forming, and grinding. The target
range of controller complexity can be quite large – from multiple robotic arms to single axis
controllers. This disparity implies that the framework must be scalable and permit portions
of the framework to be used. Other controller constraints such as memory limitations and
real-time performance also shape the framework.

Frameworks use aclass hierarchyfor domain modeling. Figure 1 portrays the class hi-
erarchy derived from the decomposition of a shop-floor controller. The decomposition of
a generic controller into classes spans many levels of abstraction and has elements for mo-
tion control and discrete logic necessary to coordinate machining, cut parts, and sequence
operations.

Classes form the building blocks of the framework. For example, the class definition for
“position” can be found throughout the hierarchy. As one moves up the hierarchy, classes
broaden their scope to define device abstractions for physical components such as sensors
and actuators. As the scope broadens however, objects have no physical equivalents. Ob-
jects such as Axis Groups are only logical entities. Axis Groups embody the planning and

A Framework for component-based CNC Machines � 3

control knowledge needed to coordinate multiple axes. In turn, methods of an Axis Group
are invoked by user-supplied Plans.

3. PLUG-AND-PLAY MODEL

Plug-and-play on a per-class basis is not really feasible. Instead, a coarser granularity
component, which we call amodule, is necessary for realizing plug-and-play. The OMAC
API framework extracts approximately 20 modules from the class hierarchy. To be plug-
and-play, a module must satisfy the following requirements:

—significant piece of software used in a component-based controller

—grouping of similar classes

—well-defined API, states, and state transitions

—replaceable by any other piece of software that implements the API, states and state
transitions.

Modules have other secondary characteristics. Modules can be eitheractiveor passive
based on variations regarding supervision and activation. Modules may provide more func-
tionality than required in the specification. More than one instance of a module may be
used in a controller. Modules may be used to build other components.

Controllers are built with a set of modules. At the top level, controllers are modeled as
a distributed system of concurrently active objects – although in implementation a single
thread of execution is possible.Active objectsdo not need to receive a message to be in the
“active” state and govern their execution by internally managing one or more independent
threads of control. To reinforce the notion of plug-and-play, we use the termactive module
in lieu of “active object.”

Examples of controller active modules include: (1)Axismodules, which perform servo
control of axis motion by transforming incoming motion goal points into setpoints for the
corresponding actuators; (2)Axis Groupmodules, which coordinate the motions of indi-
vidual axes by transforming an incoming motion segment specification into a sequence of
equi-time-spaced setpoints for the coordinated axes; (3)Discrete Logicmodules, which
implement discrete control logic or rules characterized by a Boolean function that maps
input and internal state variables to output and internal state variables; and (4)Task Coor-
dinator modules, which sequence operations and coordinate the various motion, sensing,
and event-driven control processes.

Active modules may delegate topassive modulesthat do not possess threads of control
and that depend on an active module for the execution of their functions. Examples of
passive modules include (1)Kinematic Modelmodules, which perform coordinate frame
transformations, and (2)Control Lawmodules, which are responsible for servoing calcu-
lations to reach commanded setpoints.

4. BEHAVIOR MODEL

The behavior of an active module is modeled by a Model, Events, and Finite State Machine
(FSM) pattern that is illustrated in Figure 2(a). The source (or generator) of all Events is the
Model. This means that the Model contains API, which will trigger Events, which are used
by the FSM (which will make calls to the Model’s API’s, which can generate events,ad
infinitum). The FSM may contain one or moreembeddedactive modules as illustrated in
Figure 2(b). Embedding of FSMs leads to recursive event propagation and corresponds to

4 � OMAC API

Model

FSM

Event

Model

FSM

Event

Model

FSM

Event

Model

FSM

Event

Model

Event

(a) Active Module

(b) Embedded Active Module (c) Interacting Active Modules

Axis Group

Axis

FSM

Fig. 2. Active Module Relationships

the concept of layered FSMs [Harel 1988]. FSMs can be evaluated synchronously at given
time intervals or asynchronously on an event-driven basis.

Interacting active modules maintain a client-server relationship where a supervisory
client commands a subordinate server. To communicate, a supervisory module’s Model
makes API calls to other subordinate module’s Models, which will then send events to
their own FSM’s as illustrated in Figure 2(c). Overall, event dispatching is both distributed
as well as recursive. Such event dispatching contrasts to traditional frameworks charac-
terized by centralized event handling known as inversion of control [Fayad and Schmidt
1997].

FSMs can also be eitherresidentor transient. In the transient case, an FSM can be
removed, and then replaced with another FSM. An FSM is transient when, for example, a
supervisor issues a new command to the subordinate or when an exception occurs and an
exception handling FSM is required.

Representation of an FSM can be complex and there is no universal FSM strategy. In
light of this situation, OMAC has developed the Control Plan Unit (CPU) module to cap-
ture the essentials of an FSM. The crux of the CPU class is a few fundamental methods as
seen in the following Interface Definition Language [Object Management Group 1995]:

interface ControlPlanUnit
{ ControlPlanUnit executeUnit();

boolean isDone();
};

TheControlPlanUnit is an example of the Command pattern [Gamma et al. 1994].
To evaluate the current state, an active module invokes theexecuteUnit() method,
which causes the FSM to perform a state evaluation. Examples of modules derived from
Control Plan Unit include: (1)Capability, which is a CPU to which the Task Coordina-
tor delegates for specific modes of operation corresponding to traditional CNC operating
modes (AUTO or MANUAL); (2)Motion Segment, which is a transient CPU used by the
Axis Group module for motion control; and (3)Discrete Logic Unit, which is a transient
or resident CPU for discrete logic control.

A series of linked CPUs forms a Control Plan. AControl Plan is a general-purpose
representation of a control program. OMAC API defines theControl Plan Generatormod-

A Framework for component-based CNC Machines � 5

Motion
Segment

Motion
SegmentMotion
SegmentMotion
SegmentMotion
Segment

Motion
Segment

Axis Group
Motion
Segment

Motion
Segment

Control
Plan UnitControl
Plan UnitControl
Plan UnitControl
Plan Unit

Control Plan
Generator

Motion
Segment

Task
Coordinator

Control
Plan Unit

(c) executeUnit()

(d) setN
extM

otionSegm
ent()

Control
Plan Unit

(b
)
ge

tN
ex

tC
on

tr
ol

P
la

nU
ni

t(
)

(a) translate()

N10 G01 G91 F10
N20 X10 Y10 Z10
N30 X1 Y1 Z1
N40 M30

RS 274 Part Program

Fig. 3. Collaboration Model

ule, which is responsible for translating programs written in application-specific languages
(e.g., CNC RS274D part programs [Engineering Industries Association 1979]) into the
more general Control Plan. To enable program translation, OMAC API definesProgram
Logic CPU to mimic control constructs such as if/then, or while statements. The next
section will study the case where a CPU can contain embedded CPUs as a model of col-
laboration.

5. COLLABORATION

Transient CPUs serve as data by being passed between active modules. Subsequently, such
transient CPUs then serve as the FSM logic within the behavior model. Figure 3 illustrates
the collaboration model as a CPU propagates through a simplified control system. In step
(a) the Control Plan Generator module translates a part program written in RS274D into
a Control Plan. In step (b) the Task Coordinator usesgetNextControlPlanUnit to
retrieve a CPU. In step (c) the Task Coordinator does anexecuteUnit on this CPU.
Step (c) may be repeated several times as in the case where the CPU may have to syn-
chronize with lower level modules (e.g., such as waiting until all current Motion Segments
have first completed). After synchronization, step (d) occurs whereby the CPU appends
a reference Motion Segment CPU onto the Axis Group motion queue using the method
setNextMotionSegment . This is an example of an embedded CPU being passed to
a subordinate module. Once the Motion Segment CPU is loaded onto the Axis Group
queue, it waits for activation. Once activated, the Axis Group periodically calls the Motion
Segment CPUexecuteUnit() method until theisDone() condition is true.

6. CONCLUSION

The OMAC API specification employs an open system framework to enable plug-and-play
controller technology. Components are defined at a coarse granularity to enable market
viability. The OMAC API framework provides a standard way for components to collab-
orate including provisions for exchanging information, invoking operations on each other,
and handling errors.

The OMAC API framework is not all-inclusive. The focus of effort has been to develop

6 � OMAC API

a framework for assembling and reconfiguring modules that the controller community rou-
tinely wants to upgrade. At this time, the OMAC API framework discusses, but does not
attempt to specify procedures for such issues as conformance, configuring modules, per-
formance evaluation, and resource profiling.

REFERENCES

Chrysler, Ford Motor Co., and General Motors. 1994.Requirements of Open, Modular, Architecture Con-
trollers for Applications in the Automotive Industry. Chrysler, Ford Motor Co., and General Motors.
White Paper – Version 1.1.

Engineering Industries Association. 1979.EIA Standard - EIA-274-D, Interchangeable Variable, Block
Data Format for Positioning, Contouring, and Contouring/Positioning Numerically Controlled Machines.
Washington, D.C.: Engineering Industries Association.

FAYAD , M. AND SCHMIDT, D. C. 1997. Object-Oriented Application Frameworks - Introduction.
CACM 40, 10, 32–38.

GAMMA , E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1994. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, Reading, MA.

HAREL, D. 1988. On Visual Formalisms.CACM 31, 5, 514–530.
JOHNSON, R. E. 1997. Frameworks = (Components + Patterns).CACM 40, 10, 39–42.
Object Management Group. 1995.The Common Object Request Broker: Architecture and Specification,

Revision 2.0. Framingham, MA: Object Management Group.
OMAC API Workgroup.OMAC API Set. OMAC API Workgroup.

See Web URL: http://isd.cme.nist.gov/info/omacapi.

